

Suspended-Sediment and Dissolved Oxygen Monitoring during Operational Drawdowns of Fall Creek Lake, 2012-2017

U.S. Department of the Interior U.S. Geological Survey

Liam Schenk (Ischenk@usgs.gov)
Heather Bragg (hmbragg@usgs.gov)

Acknowledgments

USGS

Heather Bragg, Mackenzie Keith, Rose Wallick, Brandon Overstreet, James White

USACE

 Greg Taylor, Mary-Karen Scullion, John Pielli, Lookout Point Control Room

Presentation Outline

- Methods
- Suspended-sediment loads 2012-2016 drawdowns
- Changes in grain size during and after drawdowns
- 2015-2016 Dissolved Oxygen

Methods

- Monitor turbidity and collect suspended sediment concentration (SSC) samples below Fall Creek Dam and Middle Fork at Jasper
 - Hydrolab SC turbidity sensors on DS 4a and 5x
 - Campbell OBS-500 sensor; WY 2014-2016
 - EWI sampling protocols for SSC + Pump Samples
- Continuous dissolved oxygen at Jasper and

Fall Creek Outflow WY 2013, 2015, 2016

Regression Model Development Methods

- Turbidity/streamflow as explanatory variables
- Log-transformed vs non-transformed models
 - Probability plot correlation coefficient (PPCC)
 - Duan BCF used for transformed data
- SLR vs MLR
 - Multi-collinearity

Project Sites: 2012-2017

Sediment Loads During and after Periods of Drawdown

Fall Creek Outflow Daily Suspended Sediment Loads

SSC concentrations and % Fines Drawdown Samples

Computed SSC unit values during drawdowns

U.S. Geological Survey, 2014

Grain Size changes during drawdowns

- In most years, percent fines decrease toward the end of the drawdown
- Potential controlling factors
 - Stream energy
 - Sediment supply in the reservoir at streambed
 - Sediment carrying capacity

$$Qs = k * w^{-0.4} * Q^{1.4} * S^{1.4}$$
 (Young et. al., 2001)

Qs=Total sediment transport capacity

k=hydraulic roughness

Q=discharge

S=slope

Dissolved Oxygen and Turbidity, November 2015

Dissolved Oxygen and Turbidity, November 2016

Summary

- Suspended-sediment loads highest in Dec 2012, variable but lower for WY 2014-2016.
 - Affected by hydrologic, meteorological conditions, and sediment supply
- Coarse sediment (> 0.063mm) transport
 - Sediment supply, stream energy, and transport capacity possible controlling factors in coarse sediment transport (>0.063mm)
 - Sand transport may be limited by timing drawdowns with low inflows, and avoiding drastic changes in streamflow
- Periods of hypoxia occurring at the onset of the sediment release 1 mile below the dam evident in WY 2016 and 2017

Questions?

References

Schenk, L.N., and Bragg, H.M., 2014, Assessment of suspended-sediment transport, bedload, and dissolved oxygen during a short-term drawdown of Fall Creek Lake, Oregon, winter 2012–13: U.S. Geological Survey Open-File Report 2014–1114, 80 p.,

<u> http://dx.doi.org/10.3133/ofr20141114</u>

Schenk, L.N., and Bragg, H.M., 2015, Suspended-Sediment Concentrations and Loads During an Operational Drawdown of Fall Creek Lake, Oregon, Winter 2013-2014: U.S. Geological Survey Data Release,

http://or.water.usgs.gov/proj/Fall_Creek/Fall_Crk_data_release_2014.pdf

U.S. Geological Survey, 2015-2016, USGS water data for Oregon: http://waterdata.usgs.gov/or/nwis/nwis/

Young, W. J., et al. (2001). "Relative changes in sediment supply and sediment transport capacity in a bedrock-controlled river." Water Resources Research 37(12): 3307-3320.

